

Enagás H2 Technical Day

The challenges on the development and sustainable construction of infrastructures

H2 Technology Readiness

Francesco Bini

April 9th, 2024

150+ years of experience in hydrogen!

First combustion engine, running with H2, **1854**

Ammonia compressor 1910

Ammonia compressor, 1930

Hydrogen compressor 1915

Technology Enabling H2 economy

- Compression is a key technology from production to transportation and utilization.
- Proven and referenced technology Hydrogen is one of the main feedstocks in Refinery, Ammonia and Petrochemical processes.
- Available compression technology based on reciprocating and centrifugal compressors, API618 and API617 design, with referenced metallurgy.
- > Available **H2 fueled gas turbines** for mech drive and power generation.

~150 years of experience working with hydrogen

Hydrogen services	Technology	Installed units	Max Flow (NM3/Hr)	Max Power (MW)
+2,250 installed - units	Recips	+2,000 (+800 with H2 >95%)	190.000	20
	Centrifugal	+250	1.200.000	19.4

H2 role evolution

Oil&Gas applications

- Hydrogen molecule as feedstock or output to/from process (hydrocracking, PDH, etc)
- Hydrogen used in Refinery, Petrochemical and Fertilizer industry, limited to industrial plants
- Mainly used where produced
- Produced from NG by reforming
- Specific guidelines for H2 compression service addressed in reference design Code (API 617 & 618)

New Energy applications

- Hydrogen molecule as energy carrier
- Hydrogen also becoming a player outside Oil&Gas environment
- large scale distribution required for new applications (fuel, heating, industrial processes)
- Green H2 produced by electrolysis powered with renewables
- Necessity for storage system and transportation
- Industry setting requirements in terms of high purity of Hydrogen for new applications (99.99%, no contaminants)

New role of H2 molecule is driving compression & combustion technologies evolution

Technology Portfolio Compression

H₂ Compression development

NEW Requirements from the Market:

- > Large volumetric flows to be processed (H2 pipeline, LH2)
- > **High pressure applications** (from 300 to 500-700 bar and above for storage and refueling stations)
- Oil-free compressors to meet H2 purity level (no contaminants)
- > Deal with intermittent/fluctuating operation (green H2 production coupled with Renewable power)

Advanced compression technology for H2 applications:

- ightarrow Large flow Compression
- → High pressure Compression

High Pressure Ratio Compressor - BASE PRINCIPLES

INCREASE TIP SPEED

Increase head per stage with use of stacked rotor and combination of open and close impeller.

INCREASE ROTATING SPEED

Parallel shaft gears to approx. 9X gear ratio and epicyclical gear for higher requirements.

COMPRESSOR DESIGN OPTIMIZATION

Optimized inlet and outlet flanges to fit "one body" design

REDUCED # OF BODIES

Reduce drastically number of stages (typically factor 2) ...up to 3 section in 1 casing

V00000000

Standard Compressor

- Casing PR w/ 100% (dry): ≤ 1.3
- · Impeller tip speed:

HPRC Compressor

- Casing PR w/ 100% (dry):
- Impeller tip speed:

Next Step

- Casing PR w/ 100% (dry): +++
- Impeller tip speed: +++

Case study – Pipeline Compression Station

Case study

Flow constant: 2000 MMSCFD,

Inlet Pressure: <u>60 bar</u>

Outlet Pressure: 110 bar

Hydrogen Blend [% mol]	0%	10%	20%	30%	40%	50%	100%		
	Number of impeller required								
Standard PCL impellers U2 = 250 m/s	3	4	4	5	5	6	28		
High head impellers U2 = 300 m/s	2	3	3	3	4	4	18		
HPRC impellers U2=420 m/s	1	2	2	2	2	2	9		

HPRC solution is a great option when H2 content is predominant

Technology Portfolio Gas Turbines

Advancing the Hydrogen Revolution

100+

Years of experience with H₂

70+

Installed GTs burning H₂ up to 100%

2009

First 100% H₂ fueled gas turbine in commercial project

WIDE RANGE OF EXPERIENCE IN BURNING HYDROGEN Turbine Max H₂ 60% Frame 9/1 50% Frame 7/1 33% LM6000 95% Frame 6/1 60% LM2500/+ 50% LM5000 50% Frame 5/1 100%* NovaLT™16 PGT10 60% MW (ISO) Light industrial eroderivative *Test campaign successfully completed

Hydrogen power plant in Fusina (Italy)

- 1. Dry flue gas stack
- 2. Bypass stack
- 3. Heat recovery steam generator (HRSG)
- 4. PGT10 gas turbine

- 5. Control room
- 6. Transformer
- 7. Diverter
- 8. Piping rack

2023NovaLTTM16

State-of-the art gas turbine 100% H₂ Ready GT Package

NovaLT™16 Gas Turbine burning 100% Hydrogen

POWERGEN SIMPLE CYCLE

16.9 MWe 36.4% Elect. efficiency

MECH DRIVE SIMPLE CYCLE

17.5 MW 37.5% Efficiency

COMBINED CYCLE COGENERATION (CHP)

22.0 MWe 31tph Steam output

48% Elect. efficiency 80% CHP Efficiency

MAINTENANCE No annual inspection,

35k - 70k (FFH) fast engine exchange,

minimized inventory

NO_x EMISSIONS

15 ppm with SCR at exhaust (today)

15 ppm DLN (from 2026)

Start up with blends up to 100% H2. Switch from NG to gas blends up to 100% H2 on the fly

Strategic hydrogen collaborations

Snam and Baker Hughes successfully **completed First Trial** for the use of H₂ as Fuel in a Gas Compression Station

Providing advanced hydrogen compression technology to Air Products

Providing 100% hydrogen fueled
NovaLT16 gas turbine technology to
Air Products

Partnering with world hydrogen industry leaders to lower the cost of production and accelerate the adoption of hydrogen as a zero-carbon fuel

Summary

H2 compression and combustion technologies:

- Available today
- > Reliable and tested
- Supporting projects feasibility and de-risking

2000+

70+

1915

2009

Compressors working with H2 rich gases

Gas Turbines burning H2 up to 100% First Reciprocating Compressor for H2

First 100% H2 GT in commercial project

